Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

David Buriánek, Zdeněk Dolníček, Milan Novák

Textural and compositional evidence for a polyphase saturation of tourmaline in granitic rocks from the Třebíč Pluton (Bohemian Massif)

Journal of Geosciences, volume 61 (2016), issue 4, 309 - 334

DOI: http://doi.org/10.3190/jgeosci.220


  Abstract References Map Affiliations

Bačík P, Cempírek J, Uher P, Novák M, Ozdín D, Filip J, Škoda R, Breiter K, Klementová M, Ďuda R, Groat LA (2013) Oxy-schorl, Na(Fe22+,Al) Al6Si6O18(BO3)3(OH)3O, a new mineral from Zlatá Idka, Slovak Republic and Přibyslavice, Czech Republic. Amer Miner 98: 485-492
http://doi.org/10.2138/am.2013.4293

Baker DR, Freda C (1999) Ising models of undercooled binary system crystallization: comparison with experimental and pegmatite textures. Amer Miner 84: 725-732
http://doi.org/10.2138/am-1999-5-604

Bakker RJ (2003) Package FLUIDS 1. New computer programs for the analysis of fluid inclusion data and for modeling bulk fluid properties. Chem Geol 194: 3-23
http://doi.org/10.1016/S0009-2541(02)00268-1

Balen D, Broska I (2011) Tourmaline nodules: products of devolatilization within the final evolutionary stage of granitic melt? In: Sial AN, Bettencourt JS, De Campos CP, FerreiraVP (eds) Granite-Related Ore Deposits. Geological Society of London Special Publications 350: 53-68
http://doi.org/10.1144/SP350.4

Balen D, Petrinec Z (2011) Contrasting tourmaline types from peraluminous granites: a case study from Moslavacka Gora (Croatia). Mineral Petrol 102: 117-134
http://doi.org/10.1007/s00710-011-0164-8

Banks DA, Green R, Cliff RA, Yardley BWD (2000) Chlorine isotopes in fluid inclusions: determination of the origins of salinity in magmatic fluids. Geochim Cosmochim Acta 64: 1785-1789
http://doi.org/10.1016/S0016-7037(99)00407-X

Barbey P (2007) Diffusion-controlled biotite breakdown reaction textures at the solid/liquid transition in the continental crust. Contrib Mineral Petrol 154: 707-716
http://doi.org/10.1007/s00410-007-0220-x

Bakker RJ (1997) Clathrates: computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures. Comput Geosci 23: 1-18
http://doi.org/10.1016/S0098-3004(96)00073-8

Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194: 3-23
http://doi.org/10.1016/S0009-2541(02)00268-1

Barker DS (1970) Compositions of granophyre, myrmekite, and graphic granite. Geol Soc Am Bull 81: 3339-3350
http://doi.org/10.1130/0016-7606(1970)81[3339:COGMAG]2.0.CO;2

Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J Geol 93: l-29
http://doi.org/10.1086/628952

Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57: 683-684
http://doi.org/10.1016/0016-7037(93)90378-A

Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson PE (ed) Rare Earth Element Geochemistry. Elsevier, Amsterdam, pp 63-114
http://doi.org/10.1016/B978-0-444-42148-7.50008-3

Breiter K (2010) Geochemical classification of Variscan granitoids in the Moldanubicum (Czech Republic, Austria). Abh Geol B -A 65: 19-25

Brown PE (1989) FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. Amer Miner 74: 1390-/1393

Bubeníček J (1968) Geology and petrography of the Třebíč Massif. Sbor geol Věd, Geol 13: 133-164 (in Czech with English summary)

Buriánek D (2003) Tourmaline granites from the Moldanubicum and Saxothuringicum - an example of using tourmaline as petrogenetic indicator. Unpublished PhD Thesis, Masaryk University, Brno, pp 1-256 (in Czech with English summary)

Buriánek D, Novák M (2003) Tourmaline orbicules in leucogranites as indicator of geochemical fractionation of late solidus to early subsolidus magmatic fluids. J Czech Geol Soc 48: 30
Direct link

Buriánek D, Novák M (2004) Morphological and compositional evolution of tourmaline from nodular granite at Lavičky near Velké Meziříčí, Moldanubicum, Czech Republic. J Czech Geol Soc 49: 81-90
Direct link

Buriánek D, Novák M (2007) Compositional evolution and substitutions in disseminated and nodular tourmaline from leucocratic granites: examples from the Bohemian Massif, Czech Republic. Lithos 95: 148-164
http://doi.org/10.1016/j.lithos.2006.07.006

Clarke DB, Dorais M, Barbarin B, Barker DAN, Cesare B, Clarke G, El Baghdadi M, Erdmann S, Forster HJ, Gaeta M, Gottesmann B, Jamieson RA, Kontak DJ, Koller F, Leal Gomes C, London D, Morgan GBV, Neves, LJPF, Pattison DRM, Pereira AJSC, Pichavant M, Rapela CW, Renno AD, Richards S, Roberts M, Rottura A, Saavedra J, Sial AN, Toselli AJ, Ugidos JM, Uher P, Villaseca C, Visona D, Whitney DL, Williamson BEN, Woodard HH (2005) Occurrence and origin of andalusite in peraluminous felsic igneous rocks. J Petrol 46: 441-472
http://doi.org/10.1093/petrology/egh083

Clayton RN, Mayeda T (1963) The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim Cosmochim Acta 27: 47-52

Cline JS, Bodnar RJ (1991) Can economic porphyry copper mineralization be generated by typical calc-alkaline melt? J Geophys Res 96: 8118-8126
http://doi.org/10.1029/91JB00053

Čopjaková R, Škoda R, Vašinová Galiová M, Novák M (2013) Distributions of Y + REE and Sc in tourmaline and their implications for the melt evolution; examples from NYF pegmatites of the Třebíč Pluton, Moldanubian Zone, Czech Republic. J Geosci 58: 113-131
http://doi.org/10.3190/jgeosci.138

Čopjaková R, Škoda R, Vašinová Galiová M, Novák M, Cempírek J (2015) Scandium- and REE-rich tourmaline replaced by Sc-rich REE-bearing epidote-group mineral from the mixed (NYF + LCT) Kracovice pegmatite (Moldanubian Zone, Czech Republic). Amer Miner 100: 1434-1451
http://doi.org/10.2138/am-2015-4863

Dingwell DB, Pichavant M, Holtz F (1996) Experimental studies of boron in granitic melts. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy and Geochemistry 33: 331-379
http://doi.org/10.1515/9781501509223-010

Dolníček Z, René M, Prochaska W, Kovář M (2012) Fluid evolution of the Hub Stock, Horní Slavkov-Krásno Sn-W ore district, Bohemian Massif, Czech Republic. Miner Depos 47: 821-833
http://doi.org/10.1007/s00126-012-0400-0

Dostal J, Chatterjee AK (2000) Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem Geol 163: 207-218
http://doi.org/10.1016/S0009-2541(99)00113-8

Duan ZH, Moller N, Weare JH (1992) An equation of state for the CH4-CO2-H2O system. II. Mixtures from 50 °C to 1000 °C and 0 to 1000 bar. Geochim Cosmochim Acta 56: 2619-2631
http://doi.org/10.1016/0016-7037(92)90348-M

Dutrow BL, Henry DJ (2011) Tourmaline: a geologic DVD. Elements 7: 301-306
http://doi.org/10.2113/gselements.7.5.301

Filip J, Bosi F, Novák M, Skogby H, Tuček J, Čuda J, Wildner M (2012) Redox processes of iron in the tourmaline structure: example of the high-temperature treatment of Fe3+-rich schorl. Geochim Cosmochim Acta 86: 239-256
http://doi.org/10.1016/j.gca.2012.02.031

Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of Central Europe: their typology, potential sources and tectonothermal relations. Mineral Petrol 61: 67-96
http://doi.org/10.1007/BF01172478

Finger F, Gerdes A, Janoušek V, René M, Riegler G (2007) Resolving the Variscan evolution of the Moldanubian sector of the Bohemian Massif: the significance of the Bavarian and the Moravo-Moldanubian tectonometamorphic phases. J Geosci 52: 9-28
http://doi.org/10.3190/jgeosci.005

Gadas P, Novák M, Staněk J, Filip J, Vašinová Galiová M (2012) Compositional evolution of zoned tourmaline crystals from pockets in common pegmatites, the Moldanubian Zone, Czech Republic. Canad Mineral 50: 895-912
http://doi.org/10.3749/canmin.50.4.895

Gao LE, Zeng LS, Asimow PD (in print) Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: the Himalayan leucogranites. Geology, doi: 10.1130/G38336.1
http://doi.org/10.1130/G38336.1

Grant JA (1986) The isocon diagram - a simple solution to Gresen’s equation for metasomatic alteration. Econ Geol 81: 1976-1982
http://doi.org/10.2113/gsecongeo.81.8.1976

Greenfield JE, Clarke GL, Bland M, Clark DC (1996) In-situ migmatite and hybrid diatexite at Mt Stafford, central Australia. J Metamorph Geol 14: 413-426
http://doi.org/10.1046/j.1525-1314.1996.06002.x

Greenfield JE, Clarke GL, White RW (1998) A sequence of partial melting reactions at Mt Stafford, central Australia. J Metamorph Geol 16: 363-378
http://doi.org/10.1111/j.1525-1314.1998.00141.x

Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Amer Miner 96: 895-913
http://doi.org/10.2138/am.2011.3636

Hoefs J, Emmermann R (1983) The oxygen isotope composition of Hercynian granites and pre-Hercynian gneisses from the Schwarzwald, SW Germany. Contrib Mineral Petrol 83: 320-329
http://doi.org/10.1007/BF00371200

Holtz F, Johannes W (1991) Effect of tourmaline on melt fraction and composition of first melts in quartzofeldspathic gneiss. Eur J Mineral 3: 527-536
http://doi.org/10.1127/ejm/3/3/0527

Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor geol Věd, ložisk Geol Mineral 31: 5-26

Holub FV, Machart J, Mráz L (1981) Tourmaline nodules from the Eisgarn granite near Volary. Acta Univ Carol, Geol 1981: 363-377 (in Czech with English summary)
http://doi.org/10.1016/B978-0-12-494850-1.50031-1

Holub FV, Klečka M, Matějka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian Geology of Central and Eastern Europe. Springer, Berlin, pp 444-452
http://doi.org/10.1007/978-3-642-77518-5

Holub FV, Cocherie A, Rossi P (1997) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constrains on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. C R Acad Sci Paris Earth Planet Sci 325: 19-26
http://doi.org/10.1016/S1251-8050(97)83268-5

Houzar S, Novák M (2006) Clintonite-bearing assemblages in chondrodite marbles from the contact aureole of the Třebíč Pluton, Moldanubian Zone, Bohemian Massif. J Czech Geol Soc 51: 249-258
http://doi.org/10.3190/JCGS.997

Huang WL, Wyllie PJ (1981) Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota. J Geophys Res 86: 10515-10529
http://doi.org/10.1029/JB086iB11p10515

Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63: 489-508
http://doi.org/10.1016/S0016-7037(99)00027-7

Inger S, Harris N (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34: 345-368
http://doi.org/10.1093/petrology/34.2.345

Janoušek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118: 75-86
http://doi.org/10.1016/S0016-7878(07)80049-6

Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47: 1255-1259
http://doi.org/10.1093/petrology/egl013

Jiang SY, Yang JH, Novák M, Selway JB (2003) Chemical and boron isotopic compositions of tourmaline from the Lavičky leucogranite, Czech Republic. Geochem J 37: 545-556
http://doi.org/10.2343/geochemj.37.545

Kotková J, Schaltegger U, Leichmann J (2010) Two types of ultrapotassic plutonic rocks in the Bohemian Massif - coeval intrusions at different crustal levels. Lithos 115: 163-176
http://doi.org/10.1016/j.lithos.2009.11.016

Kubiš M, Broska I (2005) Role of boron and fluorine in evolved granitic rock systems (on example Hnilec area, Western Carpathians). Geol Carpath 56: 193-204

Kubiš M, Broska I (2010) The granite system near Betliar village (Gemeric Superunit, Western Carpathians): evolution of a composite silicic reservoir. J Geosci 55: 131-148
http://doi.org/10.3190/jgeosci.066

Kusiak MA, Dunkley DJ, Suzuki K, Kachlík V, Kedzior A, Lekki J, Opluštil S (2010) Chemical (non-isotopic) and isotopic dating of Phanerozoic zircon - a case study of durbachite from the Třebíč Pluton, Bohemian Massif. Gondwana Res 17: 153-161
http://doi.org/10.1016/j.gr.2009.06.005

Leichmann J, Gnojek I, Novák M, Sedlák J, Houzar S (in print) Durbachites from the eastern Moldanubicum (Bohemian Massif): erosional relics of large, flat tabular intrusions of ultrapotassic melts - geophysical and petrological record. Int J Earth Sci, doi: 10.1007/s00531-016-1296-1
http://doi.org/10.1007/s00531-016-1296-1

Lexa O, Schulmann K, Janoušek V, Štípská P, Guy A, Racek M (2011) Heat sources and trigger mechanisms of exhumation of HP granulites in Variscan orogenic root. J Metamorph Geol 29: 79-102
http://doi.org/10.1111/j.1525-1314.2010.00906.x

London D (1986) Formation of tourmaline-rich gem pockets in miarolitic pegmatites. Amer Miner 71: 396-405

London D (1999) Stability of tourmaline in peraluminous granite systems; the boron cycle from anatexis to hydrothermal aureoles. Eur J Mineral 11: 253-262
http://doi.org/10.1127/ejm/11/2/0253

London D (2008) Pegmatites. Canad Mineral, Special Publication 10: pp 1-368

London D (2011) Experimental synthesis and stability of tourmaline: a historical overview. Canad Mineral 49: 117-136
http://doi.org/10.3749/canmin.49.1.117

London D, Manning DAC (1995) Compositional variation and significance of tourmaline from southwest England. Econ Geol 90: 495-519
http://doi.org/10.2113/gsecongeo.90.3.495

London D, Morgan GB VI, Wolf MB (1996) Boron in granitic rocks and their contact aureoles. In: Grew ES, Anovitz LM (eds) Boron: Mineralogy, Petrology and Geochemistry. Reviews in Mineralogy and Geochemistry 33: 299-330
http://doi.org/10.1515/9781501509223-009

Longfellow KM, Swanson S (2009) Euhedral and skeletal tourmaline in the Stone Mountain Granite, Georgia, USA. Canad Mineral 49: 341-357

Marschall HR, Jiang SY (2011) Tourmaline isotopes: no element left behind. Elements 7: 313-319
http://doi.org/10.2113/gselements.7.5.313

Marschall HR, Ludwig T (2006) Re-examination of the boron isotopic compositions of tourmaline from the Lavičky granite, Czech Republic, by secondary ion mass spectrometry: back to normal. Geochem J 40: 631-638

Maruéjol P, Cuney M, Turpin L (1990) Magmatic and hydrothermal REE fractionation in the Xihuashan granites (SE China). Contrib Mineral Petrol 104: 668-680
http://doi.org/10.1007/BF01167286

Míková J, Novák M, Janoušek V (2010) Boron isotopes in tourmaline of dravite-schorl series from granitic pegmatites of the Moldanubian Zone, Czech Republic. Acta Mineral Petrogr, Abstr Volume 6: 475

Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110: 127-146
http://doi.org/10.1016/0009-2541(93)90250-M

Morgan GB VI, London D (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contrib Mineral Petrol 136: 310-330
http://doi.org/10.1007/s004100050541

Nabelek PI, Whittington AG, Sirbescu MLC (2009) The role of H2O in rapid emplacement and crystallization of granite pegmatites: resolving the paradox of large crystals in highly undercooled melts. Contrib Mineral Petrol 160: 313-325
http://doi.org/10.1007/s00410-009-0479-1

Němec D (1975) Genesis of tourmaline spots in leucocratic granites. Neu Jb Mineral, Mh 7: 308-317

Neves LJPF (1997) Trace element content and partitioning between biotite and muscovite of granitic rocks; a study in the Viseu region (central Portugal). Eur J Mineral 9: 849-857
http://doi.org/10.1127/ejm/9/4/0849

Novák M, Filip J (2010) Unusual (Na, Mg)-enriched beryl and its breakdown products (beryl II, bazzite, bavenite) from euxenite-type NYF pegmatite related to the orogenic ultrapotassic Třebíč Pluton, Czech Republic. Canad Mineral 48: 615-628
http://doi.org/10.3749/canmin.48.3.615

Novák M, Houzar S (1996) The HT/LP metamorphism of dolomite marbles in the eastern part of the Moldanubicum, a manifestation of heat flow related to the Třebíč durbachite massif. J Czech Geol Soc 41: 139-146
Direct link

Novák M, Selway JB, Uher P (1997) Locality No. 6: Lavičky near Velké Meziříčí; quartz-tourmaline orbicules in leucocratic two-mica granite tourmaline in barren pegmatite and hydrothermal quartz-tourmaline veins. In: Novák M, Selway JB (eds) International Symposium Tourmaline 1997, Nové Město na Moravě, June 1997, Field Trip Guidebook. Moravian Museum, Brno, pp 77-84

Novák M, Selway JB, Černý P, Hawthorne FC (1999) Tourmaline of the elbaite-dravite series from an elbaite-subtype pegmatite at Bližná, southern Bohemia, Czech Republic. Eur J Mineral 11: 557-568
http://doi.org/10.1127/ejm/11/3/0557

Novák M, Povondra P, Selway JB (2004) Schorl-oxy-schorl to dravite-oxy-dravite tourmaline from granitic pegmatites; examples from the Moldanubicum, Czech Republic. Eur J Mineral 16: 323-333
http://doi.org/10.1127/0935-1221/2004/0016-0323

Novák M, Škoda R, Filip J, Macek I, Vaculovič T (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic: an electron microprobe, Mössbauer and LA-ICP-MS study. Canad Mineral 49: 359-380
http://doi.org/10.3749/canmin.49.1.359

Perugini D, Poli G (2007) Tourmaline nodules from Capo Bianco aplite (Elba Island, Italy): an example of diffusion limited aggregation growth in a magmatic system. Contrib Mineral Petrol 153: 493-508
http://doi.org/10.1007/s00410-006-0167-3

Pesquera A, Torres-Ruiz J, García-Casco A, Gil-Crespo PG (2013) Evaluating the controls on tourmaline formation in granitic systems: a case study on peraluminous granites from the Central Iberian Zone (CIZ), Western Spain. J Petrol 54: 609-634
http://doi.org/10.1093/petrology/egs080

Pichavant M (1981) An experimental study of the effect of boron on a water-saturated haplogranite at 1 kbar vapor pressure. Contrib Mineral Petrol 76: 430-439
http://doi.org/10.1007/BF00371485

Pichavant M, Manning D (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys Earth Planet Inter 35: 31-50
http://doi.org/10.1016/0031-9201(84)90032-3

Pichavant M, Valencia-Herrera J, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard S, Treuil M, Vernet M (1987) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In: Mysen BO (ed) Magmatic Processes: Physicochemical Principles. Geochemical Society, Special Publications 1: 359-373

Polya DA, Foxford KA, Stuart F, Boyce A, Fallick AE (2000) Evolution and paragenetic context of low δD hydrothermal fluids from the Panasqueira W-Sn deposit, Portugal: new evidence from microthermometric, stable isotope, noble gas and halogen analyses of primary fluid inclusions. Geochim Cosmochim Acta 64: 3357-3371
http://doi.org/10.1016/S0016-7037(00)00459-2

Pouchou JL, Pichoir F (1985) “PAP” procedure for improved quantitative microanalysis. Microbeam Anal 20: 104-105

Povondra P (1981) The crystal chemistry of tourmalines of the schorl-dravite series. Acta Univ Carol, Geol 1981: 223-264

Povondra P, Lang M, Pivec E, Ulrych J (1998) Tourmaline from the Přibyslavice peraluminous alkali-feldspar granite, Czech Republic. J Czech Geol Soc 43: 3-8
Direct link

Richardson SW, Gilbe MC, Betl PM (1969) Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria: the aluminum silicate-triple point. Amer J Sci 267: 259-272
http://doi.org/10.2475/ajs.267.3.259

Roedder E (ed) (1984) Fluid Inclusions. Reviews in Mineralogy and Geochemistry 12: 1-644

Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn-Zn-(W) mineralization in the Cape Granite Suite, South Africa. J Afr Earth Sci 21: 141-155
http://doi.org/10.1016/0899-5362(95)00088-B

Scaillet B, Pichavant M, Roux J (1995) Experimental crystallization of leucogranite magmas. J Petrol 36: 663-705
http://doi.org/10.1093/petrology/36.3.663

Schatz OJ, Dolejš D, Stix J, Williams-Jones AE, Layne GD (2004) Partitioning of boron melt, brine and vapor in the system haplogranite-H2O-NaCl at 800 °C and 100 MPa. Chem Geol 210: 135-147
http://doi.org/10.1016/j.chemgeo.2004.06.007

Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341: 266-286
http://doi.org/10.1016/j.crte.2008.12.006

Selverstone J, Hyatt J (2003) Chemical and physical responses to deformation in micaceous quartzites from the Tauern Window, Eastern Alps. J Metamorph Geol 21: 335-345
http://doi.org/10.1046/j.1525-1314.2003.00444.x

Shepherd TJ, Rankin AH, Alderton DHM (1985) A Practical Guide to Fluid Inclusion Studies. Blackie, Glasgow and London, pp 1-239

Sinclair WD, Richardson JM (1992) Quartz-tourmaline orbicules in the Seagull Batholith, Yukon Territory. Canad Mineral 30: 923-935

Spicer EM, Stevens G, Buick IS (2004) The low-pressure partial-melting behaviour of natural boron-bearing metapelites from the Mt. Stafford area, central Australia. Contrib Mineral Petrol 148: 160-179
http://doi.org/10.1007/s00410-004-0577-z

Swanson SE, Fenn PM (1992) The effect of F and Cl on albite crystallization: a model for granitic pegmatites. Canad Mineral 30: 549-559

Sylvester PJ (1998) Post-collisional strongly peraluminous granites. Lithos 45: 29-44
http://doi.org/10.1016/S0024-4937(98)00024-3

Škoda R, Novák M (2007) Y, REE, Nb, Ta, Ti-oxide (AB2O6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends. Lithos 95: 43-57
http://doi.org/10.1016/j.lithos.2006.07.020

Škoda R, Novák M, Houzar S (2006) Granitic NYF pegmatites of the Třebíč Pluton. Acta Mus Moraviae, Sci geol 91: 129-176 (in Czech with English summary)

Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geoph 33: 241-265
http://doi.org/10.1029/95RG00262

Thomas AV, Spooner ETC (1988) Fluid inclusions in the system H2O-CH4-NaCl-CO2 from metasomatic tourmaline within the border unit of the Tanco zoned granitic pegmatite, S.E. Manitoba. Geochim Cosmochim Acta 52: 1065-1075
http://doi.org/10.1016/0016-7037(88)90261-X

Thomas R, Webster JD (2000) Strong tin enrichment in a pegmatite-forming melt. Miner Depos 35: 570-582
http://doi.org/10.1007/s001260050262

Thomas R, Förster HJ, Heinrich W (2003) The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contrib Mineral Petrol 144: 457-472
http://doi.org/10.1007/s00410-002-0410-5

Touret JLR, Smirnov SZ, Peretyazhko IS, Zagorsky VY, Thomas VG (2007) Magmatic/hydrothermal transition in tourmaline-bearing miarolitic pegmatites: hydrosaline fluids or silica gels? In: Martins T, Vieira R (eds) Granitic Pegmatites: The State of the Art, 6-12 May 2007, Porto, book of abstracts. Memórias 8, Departamento de Geologia, Faculdade de Ciencias da Universidade do Porto, Porto, pp 92-93

Trumbull RB, Krienitz, M-S, Gottesmann B, Wiedenbeck M (2008) Chemical and boron-isotope variations in tourmalines from an S-type granite and its source rocks: the Erongo granite and tourmalinites in the Damara Belt, Namibia. Contrib Mineral Petrol 155: 1-18
http://doi.org/10.1007/s00410-007-0227-3

Tuttle OF, Bowen NL (1958) Origin of Granite in the Light of Experimental Studies in the System NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geological Society of America, Memoirs 74: 1-153
http://doi.org/10.1130/MEM74-p1

van Hinsberg VJ, Henry DJ, Dutrow BL (2011) Tourmaline as a petrologic forensic tool: a unique recorder of its geologic past. Elements 7: 327-332
http://doi.org/10.2113/gselements.7.5.327

Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210: 7-31
http://doi.org/10.1016/j.chemgeo.2004.06.002

Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143: 673-683
http://doi.org/10.1007/s00410-002-0368-3

Veksler IV, Thomas R, Schmidt C (2002) Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. Amer Miner 87: 775-779
http://doi.org/10.2138/am-2002-5-621

Vellmer C, Wedepohl KH (1994) Geochemical characterization and origin of granitoids from the South Bohemian Batholith in Lower Austria. Contrib Mineral Petrol 118: 13-32
http://doi.org/10.1007/BF00310608

Villaseca GC, Barbero GLC (1994) Chemical variability of Al-Ti-Fe-Mg minerals in peraluminous granitoid rocks from Central Spain. Eur J Mineral 6: 691-710
http://doi.org/10.1127/ejm/6/5/0691

Watson E, Harrison T (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64: 295-304
http://doi.org/10.1016/0012-821X(83)90211-X

Webber KL, Simmons WmB (2007) Crystallization dynamics. In: Martins T, Vieira R (eds) Granitic Pegmatites: The State of the Art, 6-12 May 2007, Porto, book of abstracts. Memórias 8, Departamento de Geologia, Faculdade de Ciencias da Universidade do Porto, Porto, pp 17-19

Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization dynamics of shallow level pegmatite-aplite dikes, San Diego County, California. Amer Miner 84: 708-717
http://doi.org/10.2138/am-1999-5-602

Wenzel T, Mertz DF, Oberhänsli R, Becker T, Renne PR (1997) Age, geodynamic setting, and mantle enrichment processes of a K-rich intrusion from the Meissen Massif (northern Bohemian Massif) and implications for related occurrences from the mid-European Hercynian. Geol Rundsch 86: 556-570
http://doi.org/10.1007/s005310050163

Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Amer Miner 95: 185-187
http://doi.org/10.2138/am.2010.3371

Wolf MB, London D (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Mineral Petrol 130: 12-30
http://doi.org/10.1007/s004100050346

Zachař A, Novák M (2013) Granitic NYF pegmatites in the Velké Meziříčí region, Třebíč Pluton, western Moravia (Czech Republic). Acta Mus Moraviae, Sci Geol 98: 83-100 (in Czech with English summary)

Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society, London, Special Publications 405, pp 169-196
http://doi.org/10.1144/SP405.9

Zhang Y, Frantz JD (1987) Determination of the homogenization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions. Chem Geol 64: 335-350
http://doi.org/10.1016/0009-2541(87)90012-X

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943