Journal of

GEOsciences

  (Formerly Journal of the Czech Geological Society)

Original paper

František Hrouda, Kryštof Verner, Šárka Kubinova, David Buriánek, Shah Wali Faryad, Marta Chlupáčová, František Holub

Magnetic fabric and emplacement of dykes of lamprophyres and related rocks of the Central Bohemian Dyke Swarm (Central European Variscides)

Journal of Geosciences, volume 61 (2016), issue 4, 335 - 354

DOI: http://doi.org/10.3190/jgeosci.222



Aydin A, Ferré EC, Aslan Z (2007) The magnetic susceptibility of granitic rocks as a proxy for geochemical differentiation: example from the Saruhan granitoids, NE Turkey. Tectonophysics 441: 85-95
http://doi.org/10.1016/j.tecto.2007.04.009

Bates MP, Mushayandebvu MF (1995) Magnetic fabric in the Umvimeela Dyke, satellite of the Great Dyke, Zimbabwe. Tectonophysics 242: 141-254

Callot JP, Geoffroy L (2004) Magma flow in the East Greenland dyke swarm inferred from study of anisotropy of magnetic susceptibility: magmatic growth of a volcanic margin. Geophys J Inter 159: 816-830
http://doi.org/10.1111/j.1365-246X.2004.02426.x

Callot JP, Geoffroy L, Aubourg C, Pozzi JP, Mege D (2001) Magma flow directions of shallow dykes from the East Greenland volcanic margin inferred from magnetic fabric studies. Tectonophysics 335: 3-4
http://doi.org/10.1016/S0040-1951(01)00060-9

Canón-Tapia E (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: A historical account. In: Martin-Hernandez F, Luneburg CM, Aubourg C, Jackson M (eds) Magnetic Fabric: Methods and Applications. Geological Society of London Special Publications 238: pp 205-225
http://doi.org/10.1144/GSL.SP.2004.238.01.14

Chadima M, Jelínek V (2008) Anisoft 4.2 - anisotropy data browser. Contrib Geophys Geodesy 38: 41 (Special Issue)

Chalapathi Rao NV, Srivastava RK (2012) Kimberlites, lamproites, lamprophyres, their entrained xenoliths, mafic dykes and dyke swarms: highlights of recent Indian Research. Proc Indian Nat Sci Acad 78: 431-444

Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Paleozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague, pp 1-183

Chlupáč I, Brzobohatý R, Kovanda J, Stráník Z (2002) Geological History of the Czech Republic. Academia, Prague, pp 1-436 (in Czech)

Dearing JA, Dann RJL, Hay K, Lees JA, Loveland PJ, Maher BA, O’Grady K (1996) Frequency-dependent susceptibility measurements of environmental materials. Geophys J Int 124: 228-240
http://doi.org/10.1111/j.1365-246X.1996.tb06366.x

Dunlop DJ, Özdemir Ö (1997) Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge, pp 1-573
http://doi.org/10.1017/CBO9780511612794

De Wall H (2000) The field dependence of AC susceptibility in titanomagnetites: implications for the anisotropy of magnetic susceptibility. Geophys Res Letters 27: 2409-2411
http://doi.org/10.1029/2000GL008515

De Wall H, Nano L (2004) The use of field dependence of magnetic susceptibility for monitoring variations in titanomagnetite composition: a case study on basanites from the Vogelsberg 1996 Drillhole, Germany. Stud Geophys Geod 48: 767-776
http://doi.org/10.1023/B:SGEG.0000045482.80307.1c

Dörr W, Zulauf G (2010) Elevator tectonics and orogenic collapse of a Tibetan-style plateau in the European Variscides: the role of the Bohemian shear zone. Int J Earth Sci (Geol Rundsch) 99: 299-325
http://doi.org/10.1007/s00531-008-0389-x

Edgar AD, Mitchell RH (1997) Ultra high pressure-temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana: Derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle. J Petrol 38, 457-477.
http://doi.org/10.1093/petroj/38.4.457

Ernst RE, Baragar WRA (1992) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356: 511-513
http://doi.org/10.1038/356511a0

Eyre JK (1997) Frequency dependence of magnetic susceptibility for populations of single-domain grains. Geophys J Int 129: 209-211
http://doi.org/10.1111/j.1365-246X.1997.tb00951.x

Faryad SW, Žák J (2016) High-pressure granulites of the Podolsko Complex, Bohemian Massif: an example of crustal rocks that were subducted to mantle depths and survived a pervasive mid-crustal high-temperature overprint. Lithos 246-247: 246-260
http://doi.org/10.1016/j.lithos.2016.01.005

Faryad SW, Nahodilová R, Dolejš D (2010) Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet. Lithos 114: 54-69
http://doi.org/10.1016/j.lithos.2009.07.014

Faryad S W, Jedlička R, Collett S (2013) Eclogite facies rocks of the Monotonous Unit, clue to Variscan suture in the Moldanubian Zone (Bohemian Massif) Lithos 179: 353-363
http://doi.org/10.1016/j.lithos.2013.07.015

Féménias O, Diot H, Berza T, Gauffriau A, Demaiffe D (2004) Asymmetrical to symmetrical magnetic fabric of dikes: paleo-flow orientations and paleo-stresses recorded on feeder-bodies from the Motru Dike Swarm (Romania). J Struct Geol 26: 1401-1418
http://doi.org/10.1016/j.jsg.2003.12.003

Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson, RA (eds), European Lithosphere Dynamics. Geological Society of London Memoirs 32: pp 333-343
http://doi.org/10.1144/GSL.MEM.2006.032.01.20

Geoffroy L, Callot JP, Aubourg C, Moreira M (2002) Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova 14: pp 183-190
http://doi.org/10.1046/j.1365-3121.2002.00412.x

Guo Z, Wilson M, Liu J, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the Northern Tibetan Plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47: 1177-1220
http://doi.org/10.1093/petrology/egl007

Gupta AK (2015) Origin of Potassium-Rich Silica-Deficient Igneous Rocks. Springer, Berlin, New York, pp 1-536
http://doi.org/10.1007/978-81-322-2083-1

Hajná J, Žák J, Dörr W (2017) Time scales and mechanisms of growth of active margins of Gondwana: a model based on detrital zircon ages from the Neoproterozoic to Cambrian Blovice accretionary complex, Bohemian Massif. Gondwana Res 42: 63-83
http://doi.org/10.1016/j.gr.2016.10.004

Henry B (1977) Relations entre deformations et proprietes magnétiques dans des roches volcaniques des Alpes francaises. Mem BRGM 91: 79-86

Holub FV (1997) Ultrapotassic plutonic rocks of the durbachite series in the Bohemian Massif: petrology, geochemistry and petrogenetic interpretation. Sbor geol Věd, ložisk Geol Mineral 31: 5-26

Holub F (2003) Zonal dyke of ocelli lamprophyre to hornblendite from Dobříš. Zpr Geol Výzk v r 2003: 106-108 (in Czech)

Holub FV, Klečka M, Matějka D (1995) Igneous activity. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer Verlag, Berlin, pp 444-452
http://doi.org/10.1007/978-3-642-77518-5

Holub FV, Cocherie A, Rossi P (1997a) Radiometric dating of granitic rocks from the Central Bohemian Plutonic Complex (Czech Republic): constraints on the chronology of thermal and tectonic events along the Moldanubian-Barrandian boundary. C R Acad Sci Paris, Sciences de la Terre et des planétes 325: 19-26
http://doi.org/10.1016/S1251-8050(97)83268-5

Holub FV, Machart J, Manová M (1997b) The Central Bohemian Plutonic Complex: geology, chemical composition and genetic interpretation. Sbor geol Věd, ložisk Geol Mineral 31: 27-50

Holub FV, Studená M, Vosk M (2007) Dolerites and gabbro to diorite porphyries in the Central Bohemian Plutonic Complex. Zpr geol Výzk v r 2006: 127-129 (in Czech)

Holub FV, Verner K, Studená M, Orságová L (2009) Dyke swarms of ultrapotassic melasyenite to melagranite porphyries from the Central Bohemian Plutonic Complex and the Šumava part of the Moldanubicum. Zpr geol Výzk v r 2008: 17-20 (in Czech)

Holub FV, Schmitz MD, Verner K, Janoušek V, Veselovský F (2010) Geochemical and temporal relations of ultrapotassic plutons and dyke swarms in South Bohemia. In: Kohút M (eds) Datovanie 2010. Zborník abstraktov. Štátny geologický ústav Dionýza Štúra, Bratislava, pp 13-14

Holub FV, Verner K, Schmitz MD (2012) Temporal relations of melagranite porphyry dikes and durbachitic plutons in South Bohemia. Zpr Geol Výzk v r 2011: 23-25 (in Czech)

Hrouda F (1985) The magnetic fabric in the Brno Massif. Sbor Geol Věd, Už Geol 19: 89-112

Hrouda F (2002) Low-field variation of magnetic susceptibility and its effect on the anisotropy of magnetic susceptibility of rocks. Geophys J Int 150: 715-723
http://doi.org/10.1046/j.1365-246X.2002.01731.x

Hrouda F (2011) Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophys J Int 187: 1259-1269
http://doi.org/10.1111/j.1365-246X.2011.05227.x

Hrouda F, Pokorný J (2011) Extremely high demands for measurement accuracy in precise determination of frequency-dependent magnetic susceptibility of rocks and soils. Stud Geophys Geod 55: 667-681
http://doi.org/10.1007/s11200-010-0079-6

Hrouda F, Přichystal A (1995) Magnetic fabric relationship between Palaeozoic volcanic and sedimentary rocks in the Nízký Jeseník Mts. (NE Moravia). J Czech Geol Soc 40: 91-102
Direct link

Hrouda F, V Jelínek V, Hrušková L (1990) A package of programs for statistical evaluation of magnetic anisotropy data using IBM-PC computers. Eos Trans Am Geophys Union (Fall meeting 1990), Conference Abstract, pp 1289

Hrouda F, Chlupáčová M, Mrázová Š (2006) Low-field variation of magnetic susceptibility as a tool for magnetic mineralogy of rocks. Phys Earth Sci Inter 154: 323-336
http://doi.org/10.1016/j.pepi.2005.09.013

Hrouda F, Faryad SW, Chlupáčová M, Jeřábek P, Vitouš P (2009) Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard AMS measurements in variable low fields II: An example from the ultramafic body and host granulitic rocks at Bory in the Moldanubian Zone of Western Moravia, Czech Republic. Tectonophysics 466: 123-134
http://doi.org/10.1016/j.tecto.2008.10.014

Jackson M, Moskowitz B, Rosenbaum J, Kissel C (1998) Field-dependence of AC susceptibility in titanomagnetites. Earth Planet Sci Lett 157: 129-139
http://doi.org/10.1016/S0012-821X(98)00032-6

Janoušek V, Holub FV (2007) The causal link between HP-HT metamorphism and ultrapotassic magmatism in collisional orogens: case study from the Moldanubian Zone of the Bohemian Massif. Proc Geol Assoc 118: 75-86
http://doi.org/10.1016/S0016-7878(07)80049-6

Janoušek V, Rogers G, Bowes DR (1995) Sr-Nd isotopic constraints on the petrogenesis of the Central Bohemian Pluton, Czech Republic. Geol Rundsch 84: 520-534
http://doi.org/10.1007/BF00284518

Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41: 511-543
http://doi.org/10.1093/petrology/41.4.511

Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78: 67-99
http://doi.org/10.1016/j.lithos.2004.04.046

Janoušek V, Wiegand B, Žák J (2010) Dating the onset of Variscan crustal exhumation in the core of the Bohemian Massif: new U-Pb single zircon ages from the high-K calc-alkaline granodiorites of the Blatná suite, Central Bohemian Plutonic Complex. J Geol Soc, London 167: 347-360
http://doi.org/10.1144/0016-76492009-008

Janoušek V, Holub FV, Gerdes A, Verner K (2013) Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source. Geophys Res Abstr 15: EGU2013-11746

Jelínek V (1978) Statistical processing of magnetic susceptibility measured on groups of specimens. Stud Geophys Geod 22: 50-62
http://doi.org/10.1007/BF01613632

Jelínek V (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79: 63-67
http://doi.org/10.1016/0040-1951(81)90110-4

Jelínek V, Pokorný J (1997) Some new concepts in technology of transformer bridges for measuring susceptibility aniso¬tropy of rocks. Phys Chem Earth 22: 179-181
http://doi.org/10.1016/S0079-1946(97)00099-2

Knight MD, Walker GPL (1988) Magma flow directions in dykes of the Koolan Complex, Oahu, determined from magnetic fabric studies. J Geophys Res 93: 4308-4319

Košler J, Konopásek J, Sláma J, Vrána S (2014) U-Pb zircon provenance of Moldanubian metasediments in the Bohemian Massif. J Geol Soc, London 171: 83-95
http://doi.org/10.1144/jgs2013-059

Kubínová Š, Faryad SW, Verner K, Schmitz M, Holub FV (in print) Ultrapotassic dykes in the Moldanubian Zone and their significance for understanding post-collisional mantle dynamics during the Variscan orogeny in the Bohemian Massif. Lithos, doi: 10.1016/j.lithos.2016.12.007.
http://doi.org/10.1016/j.lithos.2016.12.007

Lardeaux JM, Schulmann K, Faure M, Janoušek V, Lexa O, Skrzypek E, Edel JB, Štípská P (2014) The Moldanubian Zone in French Massif Central, Vosges/Schwarzwald and Bohemian Massif revisited: differences and similarities. In: Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society, London, Special Publications 405, pp 7 -44
http://doi.org/10.1144/SP405.14

Le Bas, M. J., Le Maitre, R. W., Streckeisen, A. Zanettin, B. (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745-750
http://doi.org/10.1093/petrology/27.3.745

Machek M, Roxerová Z, Závada P, Silva PF, Henry B, Dědeček P, Petrovský E, Marques FO (2014) Intrusion of lamprophyre dyke and related deformation effects in the host rock salt: a case study from the Loule diapir, Portugal. Tectonophysics 629: 165-178
http://doi.org/10.1016/j.tecto.2014.04.030

Mathieu L, De Vries BVW, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271: 1-13
http://doi.org/10.1016/j.epsl.2008.02.020

Nagata T (1961) Rock Magnetism. Maruzen, Tokyo, pp 1-366

Park JK, Tanczyk EI, Desbarats A (1988) Magnetic fabric and its significance in the 1400 Ma Mealy diabase dykes of Labrador, Canada. J Geophys Res 93: 689-704
http://doi.org/10.1029/JB093iB11p13689

Parma J, Hrouda F, Pokorný J, Wohlgemuth J, Suza P, Šilinger P, Zapletal K (1993) A technique for measuring temperature dependent susceptibility of weakly magnetic rocks. EOS Trans AGU 1993: 113

Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58: 63-81
http://doi.org/10.1007/BF00384745

Petford N (1996) Dykes or diapirs? In: Brown M, Candela PA, Peck DL, Stephens WE, Walker RJ, Zen EA (eds) The Third Hutton Symposium on the Origin of Granites and Related Rocks. Geological Society of America Special Papers 315: pp 105-114
http://doi.org/10.1017/S0263593300006520

Petrovský E, Kapička A (2006) On determination of the Curie point from thermomagnetic curves. J Geophys Res 111: B12S27
http://doi.org/10.1029/2006JB004507

Pokorný J, Pokorný P, Suza P, Hrouda F (2011) A multi-function Kappabridge for high precision measurement of the AMS and the variations of magnetic susceptibility with field, temperature and frequency. In: Petrovský E, Herrero-Bervera T, Harinarayana DI (eds) The Earth’s Magnetic Interior. IAGA Special Sopron Book Ser 1, Springer, Berlin, pp 292-301
http://doi.org/10.1007/978-94-007-0323-0

Potter DK, Stephenson A (1988) Single-domain particles in rocks and magnetic fabric analysis. Geophys Res Lett 15: 1097-1100
http://doi.org/10.1029/GL015i010p01097

Raposo MIB (2011) Magnetic fabric of the Brazilian dike swarms. A review. In: Petrovský E, Herrero-Bervera E, Harinarayana T, Ivers D (eds) The Earth’s Magnetic Interior. IAGA Special Sopron Book Series 1, Springer, Berlin, pp 247-262
http://doi.org/10.1007/978-94-007-0323-0

Raposo MIB, Ernesto M (1995) Anisotropy of magnetic susceptibility in the Ponta Grossa dyke swarm (Brazil) and its relationship with magma flow direction. Phys Earth Planet Inter 87: 183-196
http://doi.org/10.1016/0031-9201(94)02970-M

Rochette P, Jenatton L, Dupuy C, Boudier F, Reuber I (1991) Diabase dykes emplacement in the Oman ophiolite: a magnetic fabric study with reference to geochemistry. In: Peters TJ, Nicolas A, Coleman R (eds) Ophiolite Genesis and Evolution of the Oceanic Lithosphere. Kluwer, Dordrecht, pp 55-82
http://doi.org/10.1007/978-94-011-3358-6_5

Schulmann K, Konopásek J, Janoušek V, Lexa O, Lardeaux JM, Edel JB, Štípská P, Ulrich S (2009) An Andean type Palaeozoic convergence in the Bohemian Massif. C R Geosci 341: 266-286
http://doi.org/10.1016/j.crte.2008.12.006

Stephenson A, Sadikum S, Potter DK (1986) A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophys J Astron Soc 84: 185-200
http://doi.org/10.1111/j.1365-246X.1986.tb04351.x

Studýnka J, Chadima M, Suza P (2014) Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator. Tectonophysics 629: 6-13
http://doi.org/10.1016/j.tecto.2014.02.015

Tarling DH, Hrouda F (1993) The Magnetic Anisotropy of Rocks. Chapman & Hall, London, pp 1-217

Urban M, Synek J (1995) Moldanubian Zone: Structure. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer Verlag, Berlin, pp 429-424
http://doi.org/10.1007/978-3-642-77518-5

Varga RJ, Gee JS, Staudigel H, Tauxe L (1998) Dike surface lineations as magma flow indicators within the sheeted dike complex of the Troodos ophiolite, Cyprus. J Geophys Res 103: 5241-5256
http://doi.org/10.1029/97JB02717

Verner K, Žák J, Nahodilová R, Holub F (2008) Magmatic fabrics and emplacement of the cone-sheet-bearing Knížecí Stolec durbachitic pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. Int J Earth Sci 97: 19-33
http://doi.org/10.1007/s00531-006-0153-z

Worm HU (1998) On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys J Int 133: pp 201-206
http://doi.org/10.1046/j.1365-246X.1998.1331468.x

Worm HU, Clark D, Dekkers MJ (1993) Magnetic susceptibility of pyrrhotite: grain size, field and frequency dependence. Geophys J Int 114: 127-137
http://doi.org/10.1111/j.1365-246X.1993.tb01472.x

Žák J, Schulmann K, Hrouda F (2005a) Multiple magmatic fabrics in the Sázava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. J Struct Geol 27: 805-822
http://doi.org/10.1016/j.jsg.2005.01.012

Žák J, Holub FV, Verner K (2005b) Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of mid-crustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). Int J Earth Sci 94: 385-400
http://doi.org/10.1007/s00531-005-0482-3

Žák J, Dragoun F, Verner K, Chlupáčová M, Holub FV, Kachlík V (2009) Forearc deformation and strain partitioning during growth of a continental magmatic arc: the northwestern margin of the Central Bohemian Plutonic Complex, Bohemian Massif. Tectonophysics 469: 93-111
http://doi.org/10.1016/j.tecto.2009.01.035

Žák J, Kratinová Z, Trubač J, Janoušek V, Sláma J, Mrlina J (2011) Structure, emplacement, and tectonic setting of Late Devonian granitoid plutons in the Teplá-Barrandian Unit, Bohemian Massif. Int J Earth Sci (Geol Rundsch) 100: 1477-1495
http://doi.org/10.1007/s00531-010-0565-7

Žák J, Verner K, Holub FV, Kabele P, Chlupáčová M, Halodová P (2012) Magmatic to solid state fabrics in syntectonic granitoids recording early Carboniferous orogenic collapse in the Bohemian Massif. J Struct Geol 36: 27-42
http://doi.org/10.1016/j.jsg.2011.12.011

Žák J, Verner K, Janoušek V, Holub FV, Kachlík V, Finger F, Hajná J, Tomek F, Vondrovic L, Trubač J (2014) A plate-kinematic model for the assembly of the Bohemian Massif constrained by structural relationships around granitoid plutons. Schulmann K, Martínez Catalán JR, Lardeaux JM, Janoušek V, Oggiano G (eds) The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust. Geological Society, London, Special Publications 405, pp 169-196
http://doi.org/10.1144/SP405.9

Žežulková V (1982) Žilné horniny jižní části středočeského plutonu. Sbor geol Věd, Geol 37: 71-102

Journal of Geosciences, Published by © Czech Geological Society, with support from the Czech Geological Survey.
Webdesign inspired by aTeo. Hosted at the server of the Institute of Petrology and Structural Geology, Charles University, Prague.
ISSN: 1803-1943 (online), 1802-6222 (print)
email: jgeosci(at)jgeosci.org
cover_rotated.gif, 15kB

SNIP (Scopus, 2022): 0.826

IF (WoS, 2022): 1.4

5 YEAR IF (WoS, 2022): 1.8

Policy: Open Access

ISSN: 1802-6222

E-ISSN: 1803-1943